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Collatz Generalized 

Introduction 

 If an integer is odd, multiply by 3 and add 1 to get a new integer. If it is even, divide 

by two. It is conjectured that no matter what positive integer you begin with, you will 

eventually reach 1. This problem, despite being so easily understood, turns out to be 

difficult, if not impossible, to prove or disprove. For over half a century, it has enticed 

mathematicians of every caliber, from grade school children to well-published Ph.D. degree 

holders. Among them is the author of this undergraduate research paper. This report 

considers the conjecture in the context of a generalization: when an integer is odd, we 

multiply by A and add B. In this paper, we investigate whether the same goal - that every 

positive integer iterates to a given number - can be achieved for values of A and B other 

than 3 and 1, respectively. In turn, this generalization gives a better perspective on why the 

original conjecture may or may not be true. 

 

The Collatz Problem 

Also known as the 3x+1 problem, the Syracuse problem, Kakutani’s problem, 

Hasse’s algorithm, and Ulam’s problem, the Collatz problem is an unsolved mathematical 

problem generally credited to Lothar Collatz. It is based on the following function, which 

we will refer to as the “3x+1 function”: 

���� � �3� � 1, ��	� ≡ 1	�mod	2�,�2 , ��	� ≡ 0	�mod	2�. 
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The Collatz conjecture states that every positive integer repeatedly mapped under C(x) 

eventually iterates to 1.  Although the conjecture has been verified for every positive 

integer up to at least 1018 [11], it remains to be proven as true for all positive integers. 

 There are various methods of approaching the conjecture, many of which utilize 

trajectories. The trajectory (or orbit) of integer x, denoted 〈�〉, is the ordered sequence ���� 
defined by �� � � and ���� � ����� for � ∈ ��. This definition brings us to the first of two 

variations of the Collatz conjecture that will be the focus of this project: 

Collatz Conjecture –Trajectory Variation:  For all � ∈ ��, 1 ∈ 〈�〉. 
 

For later use, we will also need a few definitions regarding trajectories. First of all, a 

trajectory is divergent if there are no integers that appear twice in the trajectory. 

Otherwise, the trajectory is convergent and the repeating ordered set of numbers that it 

contains is called a loop.  For example, 〈3〉 � �3, 10, 5, 16, 8, 4, 2, 1, 4, … � converges and 

contains the loop �4, 2, 1� � �2, 1, 4� � �1, 4, 2�. Let us note that these definitions of 

convergence and divergence are not to be confused with the substantially different 

definitions generally found in mathematics. 

Methods of approaching the Collatz problem also frequently utilize the following 

alternate forms of the 3x+1 function: 

#��� � $3� � 12 , ��	� ≡ 1	�mod	2�,�2 , ��	� ≡ 0	�mod	2�; 
&��� � 3� � 12'�()��� , ��	� ≡ 1	�mod	2�, 

where m(x)=max(k ∈ ℤ+: 2k|x). When x is odd, C(x) is even, so D(x) results in more rapid 

convergence by dividing 3x+1 by 2 within a single iteration. T(x) takes the idea even 
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The Collatz tree provides a visual representation of trajectories, and leads us to our second 

variation of the Collatz conjecture: 

Collatz Conjecture – Tree Variation:  The Collatz tree is connected. 

 

By connected, we mean that for all �, * ∈ ��, �+��� � �'�*� for some ,,- ∈ ��. 

 

Project Summary 

Rather than investigating the trajectories of positive integers under the 3x+1 

function, this paper explores trajectories under a generalized “Ax+B function” on the 

integers, defined by 

�.,/��� � �0� � 1, ��	� ≡ 1	�mod	2�,�2 , ��	� ≡ 0	�mod	2�, 
where 0, 1 ∈ �. The purpose of this generalization is to create context for a better 

understanding of the 3x+1 function – the case where 0 � 3 and 1 � 1. Other 

mathematicians have explored various cases of the Ax+B function, including 3x+B by 

Belaga and Mignotte [1], 5x+1 by Conrow [3] and by Volkov[10], and Ax+1 by Crandell [6] 

and by Franco and Pomerance [7]. We will incorporate some of their work into this project. 

 To begin with, we will show that it is reasonable to only consider positive integers, 

and to only use odd value for A and B. Then we will break the generalization into three 

broad categories: 0 2 3, 0 � 3, and 0 3 3. After gaining an understanding of the 

convergence or divergence trends in each category, we will finish by evaluating the 

generalization in the context of the Collatz conjecture – both the trajectory variation and 

the tree variation. 
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 Next we eliminate the need to consider the Ax=B function when A and B are not both 

odd. Let either A or B but not both be even, and let x be odd. Then 0� � 1 is odd. Also, 

0� � 1 4 � since 0 4 1, � 4 1 and 1 4 0. If 0 � 1 and 1 � 0, then 〈�〉 � ��, �, �, … � which 

is an unproductive result. Otherwise, 0� � 1 is strictly greater than x, so the trajectory of x 

consists of increasing odd values, and will therefore invariably diverge. Now let x be even. 

Since � 3 0, �.,/��� 2 �, and so the trajectory will contain decreasing values until it 

reaches an odd value, at which point, it will diverge as previously demonstrated. Even if x is 

a power of 2 and will iterate to 1 before any other odd value, it will still diverge upon 

reaching 1 (a conundrum we consider later). Thus every trajectory diverges under the 

Ax+B function when exactly one of A and B is even, so A and B must be either both even or 

both odd. Given that restriction, �.,/��� is even for odd x, so we can utilize the D and T 

functions with the generalization: 

#.,/��� � $0� � 12 , ��	� ≡ 1	�mod	2�,�2 , ��	� ≡ 0	�mod	2�; 
&.,/��� � 0� � 12'�.)�/� , ��	� ≡ 1	�mod	2�, 

where -��� � max�7 ∈ ��: 29|��. Returning to the parameters, suppose both A and B are 

even and let x be odd. Then  

#.,/��� � 0� � 12 � 02 � � 12 � �.;,/;���. 
Thus the trajectories are equivalent, with regards to odd elements, under �.,/��� and 

�<=,>=���, and so we restrict our investigation to 0, 1, � ∈ ��, where A and B are both odd. 
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 With these restrictions on the parameters, we begin investigating convergence and 

divergence for various values of A and B. In particular, we will explore the general situation 

when 0 2 3, when 0 � 3, and when 0 3 3. 

 

? 2 3  

 Since A is positive and odd, this category only deals with 0 � 1. In this situation we 

can prove that every trajectory converges and that there are finitely many x that can be in a 

loop for any given B. 

Theorem 1: 

Let 0 � 1. Then for all odd 1 ∈ ��, 

a. 〈�〉 converges for all � ∈ ��, and 

b. under #�,/���, � ∈ �� is in a loop iff � @ 1. 

 

Proof: 

Let � 3 1. If x is even, then 
); 2 �. If x is odd, then 

)�/; 2 )�); � �. Thus #�,/��� 2 �. 

Therefore, every trajectory converges (part a) and x is in a loop only if � @ 1 (one direction 

of part b). 

Let � @ 1. We want to show that x is in a loop. Since there are finitely many � @ 1, it 

suffices to show for each � @ 1 that #�,/��� @ 1 and that there exists a positive integer 

* @ 1 such that #�,/�*� � �. If x is even, then #�,/��� � ); 2 � @ 1. If x is odd, then                

#�,/��� � )�/; @ /�/; � 1. That satisfies the first requirement, and so we continue to the 
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second. If � 2 /;, then #�,/�2�� � � and 0 2 2� @ 1. If � 3 /;, then #�,/�2� A 1� � � and 

0 2 2� A 1 @ 1. That satisfies the second requirement. Thus x is in a loop if � @ 1 (the 

other direction of part b). ∎ 

 

? � C 

 As with the last section, we are only dealing with one value of A. However, unlike the 

last section, our claim might not be true, and even if it is, it might not be provable. 

Conjecture 1: 

Let 0 � 3. Then for all odd 1 ∈ ��, 〈�〉 converges for all � ∈ ��. 

 

 Let the stopping time of � ∈ �� under #.,/���, denoted D.,/���, be the least number 

of iteration required to reach a number less than x. That is, 

D.,/��� � EminH7 ∈ ��: #.,/9 ��� 2 �I , ��	H7 ∈ ��: #.,/9 ��� 2 �I J ∅,∞, ��	H7 ∈ ��: #.,/9 ��� 2 �I � ∅. 
Thus a stronger variation of Conjecture 1 would be: Given 0 � 3 and any odd 1 ∈ ��, there 

exists an M ∈ �� such that D��� is finite for all � 3 M. If every integer greater than N 

iterates to some smaller integer, then not only does every trajectory converge, but only a 

finite number of loops exist. We cannot prove this, but we can provide strong evidence for 

convergence through a slightly weaker statement. Consider the following sequence: 

N/�7� � lim'→Q RH� @ -: D(,/��� 4 7IR- . 
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For each k, N/�7� is the density of positive numbers with stopping time not less than k. 

Terras [13,14] proved that lim9→Q N��7� � 0, which means the density of positive integers 

with finite stopping time is 1. Furthermore, Terras’ proof can be expanded for all odd 

positive B, which we will we state here as a theorem, without reconstructing the extensive 

proof. 

Theorem 2:  

For all odd 1 ∈ ��, lim9→Q N/�7� � 0.  

 

? 3 3  

 Now we deal with all other values of A. When 0 3 3, it appears that there exist 

divergent trajectories. For example, under &S,�, it seems 〈7〉 � �7,9,23,29,73,183,… � 
diverges. In Figure 3, we see that after 300 iterations, 〈7〉 has elements greater than 10;S, 

and is reaching exponentially larger values at a fairly steady rate. This is also the case for 

numerous other trajectories when 0 3 3, which leads us to our next conjecture. 

Conjecture 2: 

Let 0 3 3. Then for any odd 0, 1 ∈ ��, 

a) (Weak) there exist � ∈ �� for which 〈�〉 diverges; or 

b) (Strong) there exists a positive density of x in ℤ� for which 〈�〉 diverges. 

Comment: 

We have two different strengths of the conjecture to illuminate the fact that, 

although the stronger version appears to be true, the substantially weaker version remains 

unproven. 

 



 

A Heuristic Argument: 

Note that for every other odd 

fourth odd 

follow this pattern and establish that 

enough values of 

since ∑Q9
for all 0

Figure 3

 

A Heuristic Argument: 

Note that for every other odd 

fourth odd x, 4	|	�0�
this pattern and establish that 

enough values of x, 

W X&.,/����
Y .Z[\Q9]�  is a geometric series. 

3 3. 

3 – Apparent Divergence of 

A Heuristic Argument:  

Note that for every other odd 

0� � 1�, but 8
this pattern and establish that 

 

� �^ � _2`9Q
9]�

is a geometric series. 

Apparent Divergence of 〈a

Note that for every other odd x, 2	|	
8 ∤ �0� � 1

this pattern and establish that c Y&.
9�0� � 1�� 2

is a geometric series. This implies that every trajectory will tend to 

〈a〉 under de,f 

 

	�0� � 1�, but 

1�. Treating a trajector

Y .,/��� � 2`9

� 2`9 � _0�4
Q
9]�

This implies that every trajectory will tend to 

 

, but 4 ∤ �0� �
. Treating a trajectory as a random walk, we 

`9�0� � 1�\

0� � 149� 3 _Q9]�
This implies that every trajectory will tend to 

� 1�. Likewise, for every 

y as a random walk, we 

�\ � 2`9. Thus for high 

_ 049� � 041 A 14
This implies that every trajectory will tend to 

 

. Likewise, for every 

y as a random walk, we 

Thus for high 

14 � 03	, 
This implies that every trajectory will tend to diverge 

11 

. Likewise, for every 

y as a random walk, we 

diverge 



 12 

Yet regardless of the “rate of divergence” suggested by our argument, there is no 

guarantee that any given trajectory will never reach the product of a loop element and a 

power of 2. 

 

Goal I: Every trajectory contains 1 

 With a general understanding of convergence and divergence when 0 2 3, 0 � 3, 

and 0 3 3, we now move on to identifying what combinations of A and B satisfy the Collatz 

conjecture. For this section, we will first consider the trajectory variation:  

For all � ∈ ��, 1 ∈ 〈�〉. 
 

Theorem 3: 

For all � ∈ ��, 1 ∈ 〈�〉 only if 1 � 1. 

 

Proof: 

Let � ∈ �� and let 1|�. Note that 1|�0� � 1�. Also, if x is even, g	); , since B is odd. 

Thus 1|�.,/���. Therefore, 1|�.,/+ ��� for all , ∈ 	��. From that we know that B divides 

every element of 〈1〉. Therefore, 1 is not in 〈1〉 unless 1 � 1. ∎ 

 

By Theorem 3, we assume 1 � 1 if we want 1 in every trajectory. Then by Theorem 

1, every trajectory converges when 0 � 1, and only � @ 1 � 1 are in a loop. Thus, the 

trajectory variation of the Collatz conjecture is true for �0, 1� � �1,1�. Now �0, 1� � �3,1� is 
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the original unsolved problem, so we move on to the �0, 1� scenarios for 0 3 3. If we could 

prove Conjecture 2b, we would be done. Lacking that, however, we turn to other methods. 

One way to show that trajectories exist which do not contain 1 is to show the 

existence of loops which do not contain 1. For 1 � 1, the only such known loops are 

{13,33,83} and {17,43,27} under &S,���� and {27,611} and {35,99} under &�h�,����. 

Franco and Pomerance [7] detail a second method of finding values of A for which 

there exist trajectories without 1. Consider the case where 1 is the second iteration of x 

under &.,����. Then for some 7, i ∈ ��, 

0 Y0� � 129 \ � 12j � 1 

⟹ 	0�0� � 1� � 29�2j A 1�. 
Then since A is odd, 0|�2j A 1�. From number theory, we know that 0|�2j A 1� only if 

l�0�|i, where l is the Euler totient function. Define d as 

m � gcd X2p�.� A 10 , 0^. 
Suppose A is such that m J 1. Then for all i ∈ �� for which 0|�2j A 1�,  

m q	2j A 10 . 
But since A is odd, d is odd, so gcd�29, m� � 1. Thus m|�0� � 1�, which is a contradiction, 

since m|0�. Therefore, if m J 1 for some A, then 1 is not the second iteration of any x under 

&.,����. Franco and Pomerance refer to such A as Wieferich numbers. Some sources [16] 

define A as a Wierferich number only when m � 0. However, for the purposes at hand, we 

will stick with the first definition. Here are the first fifty Wieferich numbers: 
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21, 39, 55, 57, 105, 111, 147, 155, 165, 171, 183, 195, 201, 203, 205, 219, 231, 237, 

253, 273, 285, 291, 301, 305, 309, 327, 333, 355, 357, 385, 399, 417, 429, 453, 

465, 483, 489, 495, 497, 505, 507, 525, 543,  555, 579, 597, 605, 609, 615, 627. 

 

All in all, we know that the trajectory variation of the Collatz conjecture is false if 

1 J 1. When 1 � 1, the conjecture is true for 0 � 1 and appears to be true for 0 � 3. 
Furthermore, the conjecture appears to be false for all 0 3 3, though we have only proven 

that to be the case for 0 � 5, 0 � 181, and when A is a Wieferich number. 

 

Goal II: The Collatz tree contains every positive integer 

Aside from the trivial case of 0 � 1 � 1, the trajectory variation of the Collatz 

conjecture (Goal I) appears to be uniquely satisfied by the 3x+1 function. However, recall 

from our initial discussion of the parameters that it is possible for 1 to be in a divergent 

trajectory. This fact alone gives us reason to rethink the goal of our generalization, which is 

why we have another variation of the Collatz conjecture – the tree variation:  

The Collatz tree is connected. 

 

Even if 1 is not in a loop, it may be possible for a Collatz tree to be connected. From 

the discussion of Goal I, we know that the tree is connected when �0, 1� � �1,1�, since 

everything converges to 1. However, if 0 � 1 and 1 3 1, then #�,/�1� � 1 and #�,/��� 2 1 

for � 2 1, which implies at least 2 disjoint “branches”. For example, look at the trees for 

��,(��� and ��,S��� (Figure 4). 
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Figure 4a – Collatz Tree of rf,C�s� 

 

Figure 4b – Collatz Tree of rf,e�s� 

 

 

 So for 0 � 1, the trajectory and tree variations of the Collatz conjecture are satisfied 

by the same B, namely 1 � 1. This may not be the case with 0 � 3. Consider the tree of 

�(,(��� (Figure 5). Although 1 is not in a loop, and thus there are many trajectories without 

1, it appears that every trajectory converges to the loop containing 3, in which case, the 

Collatz tree for �0, 1� � �3,3� would be connected. The author has verified with Maple that 

〈�〉 converges to the loop with 3 for all � 2 10h (see the Appendix). 
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Figure 5 – Collatz Tree of rC,C�s� 

 

 

 However, if we find that more than one loop exist when 1 � 1t, than using Theorem 

4, we know that more than one loop exists whenever B is a multiple of 1t. For example, the 

existence of multiple loops under &(,S ({1}, {5}) and &(,u ({5,11}, {7}) implies that multiple 

loops exists under &(,�S, &(,;�, &(,;S, &(,(S, &(,ZS, &(,Zv, etc. 

 

Theorem 4: 

Let ���, �;, … , �+� be a loop under &.,/. Then for all w ∈ ��, �w��, w�;, … , w�+� is in a 

loop under &.,x/. 
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Proof: 

 Note that �� � &.,/��+� � .)y�/;[z  for some 7� ∈ ��. Likewise for each � ∈ �2,3, … , ,�, 
�� � &.,/���`�� � .){|z�/;[{  for some 7� ∈ ��. Thus 

w�� � w0�+ � 129z � 0w�+ � w129z � &.,x/�w�+�; 
w�� � w0��`� � 129{ � 0w��`� � w129{ � &.,x/�w��`�� 

for all � ∈ �2,3, … , ,�. ∎ 

 

 Nevertheless, eliminating the requirement that all trajectories iterating to 1 allows 

for the possibility of more values of B that are of interest when 0 � 3. For 0 3 3, we return 

to the fact that there appear to be divergent trajectories, which implies a disconnected 

Collatz tree. However, having eliminated the necessity for 1 � 1, and with the method 

involving Wieferich numbers no longer at our disposal, a connected tree is now more 

plausible for 0 3 3. 

 Furthermore, we might reconsider the possibility of incorporating non-positive 

integers into the generalization. Is it possible to find a combination of A and B, such that a 

Collatz tree of ever integer, not just positive integers, is connected? Since �.,/�0� � 0 for all 

�0, 1�, then a connected tree would require every trajectory to contain 0. Obviously, the 

trivial case �0, 1� � �0,0� satisfies this requirement.  

Suppose 0 3 0. If 1 4 0, then for � ∈ ��, �.,/��� ∈ ��, and so 0 ∉ 〈�〉. But if  1 @ 0, 

then for � ∈ �`, �.,/��� ∈ �`, and so 0 ∉ 〈�〉. Thus, 0 @ 0. Suppose 0 � 0 and 1 J 0. Then 

for odd x,	�~,/��� � 1. Thus (ignoring the trivial case), 0 J 0. 



 18 

We can restrict A even further than 0 2 0. For � J 0, �.,/��� � 0 only if � � A /.. 

Thus it must be the case that 0|1. Now to contain 0, every trajectory must contain A /.. 

Recall Theorem 3, which states that 1 ∈ 〈�〉 only if 1 � 1. The proof showed that if 1 ∤ 1, 

then there exists an x such that 1 ∉ 〈�〉. Likewise, unless 1 g	YA /.\, there exists an x such 

that YA /.\ ∉ 〈�〉. Therefore, 0 � A1. 

If 1 2 A1, it is easily shown that that 1 2 � 2 0 implies 1 2 #`�,/��� 2 0. Similarly, 

if 1 3 1, it is easily shown that  0 2 � 2 1 implies 0 2 #`�,/��� 2 1. Thus, when |1| 3 1, 

there are integers that never iterate to 0. Hence, |1| � 1. With that restriction on B, 

R#`�,/���R 2 |�| whenever |�| 3 1, which makes it easy to prove that every trajectory does 

in fact converge to 0. 

Therefore, when we consider the generalization for all integers, then the Collatz tree 

is connected if and only if �0, 1� ∈ ��0,0�, �A1,A1�, �A1,1��, which are all trivial cases. And 

so, as we suspected from the start, considering our generalization for all integers does not 

contribute to a better understanding of the 3x+1 problem, from either the trajectory or the 

tree perspective. 

 

Summary of Findings 

 With our Ax+B generalization, we have proven several interesting facts for 0 � 1. 

First, every trajectory converges and x is in a loop if and only if � @ 1.  Second, both the 

trajectory and the tree variations of the Collatz conjecture are satisfied if and only if 1 � 1. 

Yet the case of �0, 1� � �1,1� is sufficiently trivial that it does not contribute to our 

understanding of the 3x+1 Problem. 
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 For 0 3 3, we proved that some trajectories do not contain 1 if 1 J 1, if 0 ∈ �5,181�, 
or if A is a Wieferich number. Yet we have nothing definitive to say regarding the tree 

variation of the conjecture when 0 3 3. Nevertheless, we showed that the expected value of 

the ratio of &��� to x is always greater than 1, which suggests that some divergent 

trajectories exist for all scenarios when 0 3 3. 

When 0 � 3, we used stopping times and a proof by Terras [13,14] as evidence that 

every trajectory converges. Regarding the trajectory variation of the Collatz conjecture, we 

proved that it is possible for 1 to be in every trajectory only if 1 � 1. However, there are 

potentially other values of B that satisfy the tree variation of the conjecture, such as 1 � 3. 

 

Conclusion 

 Since first proposed by Lother Collatz, the Collatz conjecture has been verified for 

increasingly many positive integers, yet still remains unproven. By looking at the 3x+1 

problem under an Ax+B generalization, we understand a little better why every positive 

integer eventually iterates to 1. On the one hand, we demonstrate that �0, 1� � �3,1� 

appears to be the only non-trivial combination (since 0 � 1 was proven to be relatively 

trivia) such that every trajectory contains one. On the other hand, however, when we look 

at the problem from the Collatz tree perspective, there appear to be other non-trivial 

combinations of A and B such that the associated tree may be connected, such as 

�0, 1� � �3,3�. In conclusion, we have shown why other cases of the generalization do not 

or likely do not share the conjectured properties of the 3x+1 function, but whether or not 

the 3x+1 function does in fact exhibit the conjectured properties is still a wide open 

question.
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Appendix – Maple Code 

Under �(,(���, suppose 3 ∈ 〈�〉 for all odd x less than some odd *. It is easy to see 

that if � ∈ 〈*〉 for any odd � 2 *, then 3 ∈ 〈*〉. Thus, after verifying that 3 ∈ 〈�〉 for  

� ∈ �1,3�, the following Maple 13 program was used to verify that 3 ∈ 〈�〉 for all � @ M. The 

variable ‘divergeLimit’ is some arbitrarily large number than prevents runtime errors if a 

trajectory does not appear to converge. The set ‘trajectory’ keeps track of the values in a 

trajectory in order to identify if a loop occurs that does not include 3. Note that the 

program will ignore values in a loop if it has already identified the loop’s lowest value. On a 

3.33 GHz processor with 4 MB of RAM, the runtime for M � 10h was about half an hour. 

 

convergeA3B3:=proc(N) 

  local diverge,divergeLimit,loop,i,x,trajectory; 

  diverge:={}; 

  divergeLimit:=N^3; 

  loop:={}; 

  for i from 5 to N by 2 do 

    trajectory:={}; 

    x:=i; 

    while x<divergeLimit and x>=i and evalb(x∉trajectory) do 
      trajectory:=trajectory∪{x}; 
      x:=3*x+3; 

      while mod(x,2)=0 do 

        x:=x/2 

      od; 

    od; 

    if x>=divergeLimit then 

      diverge:=diverge∪{i} 
    elif evalb(x ∈trajectory) then 
      loop:=loop∪{x} 
    fi; 

  od; 

  print(“The following odd values less than N appear to diverge:”,diverge); 

  print(“The following odd values less than N are in a loop:”,loop) 

end: 
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